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Abstract
The use of large amounts of chemical fertilizers promotes high-yield agriculture, but is also associated with a number of
problems, such as low fertilizer utilization rates, soil acidification, and soil salinization. Comprehensive studies have shown that
spraying chelated fertilizer on leaves can reduce the total amounts of fertilizer applied and achieve high fertilizer efficiency. Foliar
fertilizer application after soil fertilization is an effective method to increase the contents of trace elements in crops and crop yield,
and to improve the soil environment. However, the application of inorganic foliar fertilizer results in difficulties in nutrient
absorption andmigration in plants. Chelated foliar fertilizers are effective for improving element utilization efficiency, crop yield,
and quality. The physicochemical properties, molecular structure, chelating strength, and chelating rate of chelating agents
modulate the effects of application of nutrients. This study reviews and discusses the effects and problems associated with sugar
alcohol–containing chelated fertilizers and foliar fertilizers.
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1 Introduction

In the world, 20% of cultivated land and 33% of irrigated land
are salt-affected and degraded (Almeida Machado and
Serralheiro 2017), which affect the availability and supply of
soil nutrients to crops, resulting in a reduction of both yield
and quality, and it has been one of the most important factors
contributing to crop losses worldwide (Litalien and Zeeb
2020). In order to increase production, more chemical fertil-
izers are applied to soil, but due to inappropriate application of
mineral nutrients, soil degradation, including acidification,
secondary salinization, nutrient imbalance, and an abnormal
accumulation of nitrogen (N), phosphorus (P), and potassium
(K), is common in soils (Cai 2019), with secondary saliniza-
tion being the most prominent of these phenomena (Yu et al.
2005). Therefore, to alleviate the adverse effect of soil salini-
zation and degradation on crop yield and quality, avoid sec-
ondary salinization, and promote sustainable agriculture, a
knowledge-based fertilization method is needed.

Fertilization methods can be divided into root fertilization
and foliar fertilization ones, according to the way by which
crops absorb nutrients. The utilization of soil fertilizer nutri-
ents is affected by a number of factors, including soil temper-
ature, humidity, salinity, and microbiota (Li et al. 2009).
When inorganic salts are applied alone or in combination with
other fertilizers to the soil, both nutrient fixation and antago-
nism between the nutrients occur (Montalvo et al. 2016). For
example, excess P becomes “fixed” in soil, where it forms
chemical bonds with other elements, including calcium (Ca),
magnesium (Mg), iron (Fe), and zinc (Zn), and becomes un-
available for plant uptake (Raliya et al. 2018). Therefore, al-
though nutrients may be abundant in soil, low bioavailability
will restrict plant growth and reduce fertilizer utilization (Xiao
et al. 2018), with unused nutrients temporarily accumulating
in the soil or being lost to air or water. Compared with root
fertilization, foliar fertilization, as a supplementary fertiliza-
tion strategy, can deliver nutrients directly to the target
through aerial plant parts, thereby helping to reduce negative
impacts on the soil (Bindraban et al. 2015; Fernández and
Eichert 2009). Although foliar fertilizers have traditionally
been used to correct nutritional deficiencies, the trend toward
foliar spray application is increasing (Fernández and Eichert
2009). Foliar fertilization strategies can achieve higher nutri-
ent use efficiency, reduce the negative impact on the
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environment, and potentially enhance consumer health bene-
fits (Otálora et al. 2018).

Reviews focusing on the mechanisms of the penetration of
foliar-applied nutrient solutions through the leaf surface as
well as on the major factors affecting its absorption and mo-
bility in plant tissues have been published (Fernández et al.
2013; Fernández and Brown 2013; Fernández and Eichert
2009). This review presents an overview of the effects of the
application of foliar fertilization, focusing on the efficiency
comparison between inorganic and chelated fertilizers. The
review also provides insight into the advantages of high-
efficiency foliar fertilizers, such as sugar alcohol–chelated leaf
fertilizers compared with others, and identifies the future re-
search prospects.

2 Advantages of Foliar Fertilizers

Since the Green Revolution, a higher crop production per area
has resulted in a large depletion of soil micronutrients.
Micronutrient deficiencies have become a limiting factor for
crop productivity in agricultural land worldwide
(Khoshgoftarmanesh et al. 2010), and mineral malnutrition
has a considerable negative impact on individual well-being,
social welfare, and economic productivity (Stein 2010). Root
nutrient supply is restricted in arid and saline soils because of
the negative effects of abiotic stresses, such as low water
availability, extreme temperatures, high pH, and high salt
levels on nutrient availability (Hu et al. 2008; Martínez-
Ballesta et al. 2010). The availability of some micronutrients
in the soil is also influenced by other elements. Considering
the advantages of foliar fertilization, it is clear that supplying
nutrient elements via foliage fertilization is a good strategy,
with higher efficacy than soil fertilization, being more target-
oriented and environmentally friendly since nutrients can be
applied in controlled quantities and at a specific period of
plant growth. The positive effect of foliar fertilizers compared
with soil-applied ones can be explained by three different
mechanisms.

First, nutrient elements can be absorbed directly through
the leaves and transported to other organs (Gao et al. 2018),
thereby replenishing essential nutrients more quickly and
efficiently compared with soil fertilization. For example,
using the 15N tracer technique, Sun et al. (2017) reported that
the level of 15N in leaves was higher in grape seedlings treated
with foliar fertilization than with soil fertilization at the mature
stage in new shoots. Foliar applications of urea in root N-
limited plants increased the total N concentration in sweet
pepper fruits and their quality, with no significant differences
being found with respect to soil-applied N (del Amor et al.
2009). Foliar-applied gold nanoparticles could be taken up by
watermelon through direct penetration and transport through
the stomatal opening (Raliya et al. 2016), and foliar

application of TiO2 and ZnO nanoparticles was found to be
more effective than the soil application on the uptake of the
nanoparticles by tomato (Raliya et al. 2015). Soil Zn applica-
tion (at a rate of 50 kg of ZnSO4·7H2O ha−1) was effective in
increasing grain Zn concentration in a Zn-deficient location,
but not in the locations without Zn deficiency, while foliar
application of Zn significantly increased Zn concentration in
whole grain and in each grain fraction in all locations, with the
grain Zn concentration increasing from 11 to 22 mg kg−1 in
Zn-deficient locations and Zn being transported to the endo-
sperm through the crease phloem (Cakmak et al. 2010). Foliar
Zn application resulted in higher grain Zn recovery than soil
Zn application when determining the potential for increasing
the Zn concentrations in maize and wheat grain (Wang et al.
2012). Wang et al. (2013) reported that supply of Se by foliar
spraying was associated with maximum grain Se recovery
rates of 52‰ and 106‰ for maize during the first and second
growing seasons, respectively, whereas soil Se application
achieved rates of only 1.69‰ and 0.95‰. Due to the high
availability of foliar application, Se levels can be kept suffi-
ciently low to avoid posing a health risk (Schiavon et al.
2013).

Second, high-potency nutrients can be sprayed at optimum
timing and concentrations according to the needs of different
crops at different growth stages, which can be more closely
matched to the crop requirements compared to soil-applied
fertilizers. For example, cotton relies mainly on roots to take
up nutrients from the soil. Due to the poor nutrient uptake
capability of the root system at the seedling stage and the
reduced root activity in later stages, it is often difficult for root
uptake to meet the nutritional needs, with leaf fertilization
being a good way to replenish roots in these two periods (Li
et al. 2014b). Manganese (Mn), Mg, and Fe, which are all
involved in shoot-specific processes such as chlorophyll bio-
synthesis and photosynthesis, are good nutrient candidates for
foliar fertilization (Bindraban et al. 2015). Both leaf chloro-
phyll and photosynthesis were reported to increase by
spraying Mg on newly developing leaves, and thus had an
important influence on the pod formation of faba beans
(Neuhaus et al. 2014). Therefore, further research regarding
appropriate spray timing and target tissues will improve the
reproducibility of the effects of foliar sprays to facilitate com-
mercial use (Fernández and Eichert 2009). For example, foliar
application of K fertilizer is effective to improve the physio-
logical indexes of grapes, where higher K levels are required
at the berry expansion stage than at the full blooming stage
(optimum spraying concentrations of 0.5–0.8% and 0.2–
0.5%, respectively) (Zhang et al. 2016). In addition, better
increases in grain Zn via foliar application were achieved
when Zn was applied at the late growth stage of wheat and
rice (e.g., milk and dough stages) (Cakmak et al. 2010;
Phattarakul et al. 2012). The Ca content of peach treated with
Ca fertilizer was significantly higher than that at the swelling
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stage (Yu et al. 2017), and spraying amino acid–chelated se-
lenium (Se) fertilizer at the full flowering stage was better than
spraying it at the young fruit development stage to increase the
Se content of the peel, pulp, and seeds of kyoho grapes (Zheng
et al. 2016).

Finally, foliar application can be beneficial by
exploiting synergistic effects between different nutrients
(Bindraban et al. 2015; Xiao et al. 2004). For example,
addition of Zn sulfate (ZnSO4) to foliar Fe increased both
the Fe and Zn content in rice (Wei et al. 2012a), and
application of Fe, Zn, and Se, alone and in combination,
promoted the accumulation of Ca in maize seeds (Li et al.
2018). Leaf spraying of Mn associated with silicon (Si)
increased micronutrient accumulation, and physiological
and biochemical indexes, and reflected resulted increases
in dry mass production of corn and sorghum plants
(Oliveira et al. 2020). Wu et al. (2011) suggested that
the effect of combined application of copper (Cu) and
Zn on the biomass and chlorophyll content of Salvia
was better than those of single applications of Cu and
Zn. Among the treatments with different trace elements,
combined application of boron (B) and molybdenum (Mo)
showed the best effect, with significant increases achieved
in the aboveground and underground biomass of straw-
berry (Zhang et al. 2017). A recent study showed that
foliar application of 0.2% nickel sulfate (NiSO4·7H2O)
significantly increased the growth, yield, and the Fe, Cu,
Mn, and Zn content of barley (Kumar et al. 2018).
However, another study suggested that Mn and Zn have
opposing effects; moreover, Se promoted the accumula-
tion of Zn, whereas Fe and Zn slightly inhibited Se accu-
mulation in potato (Barben et al. 2011).

However, other research (Wu et al. 2011) indicated that
spraying Cu was better than soil base application and soil
topdressing, whereas soil base application of Zn was bet-
ter than foliar application, mainly due to the relatively
high content of available Cu and the severe shortage of
available Zn in the soils tested; under an acceptable soil
Cu supply, early basal application and mid-term topdress-
ing had little effect on the growth of Salvia miltiorrhiza,
while mid-term foliar spraying had a better effect. When
the available Zn in soil was lower than the critical level,
the soil could supply Zn steadily after early basal and
topdressing to meet the Zn requirement for the whole
growth period. However, only spraying Zn on the leaf
surface in the mid-term is unlikely to meet the Zn require-
ments during the early growth stage of Salvia. Therefore,
the types and formulations of foliar fertilizer used should
be based on the soil nutrient status and the interaction
between the foliar-applied nutrient and the uptake of
soil-applied fertilizers should be taken into consideration
for an integrated management of soil fertility (Wang et al.
2015).

3 Effects of Foliar Fertilizers

3.1 Effects on Crops

There is abundant evidence that foliar fertilizers play an active
role in improving the quality, yield, and metabolism of crops
(Fernández and Brown 2013). Hydroponics experiments
showed that leaf application of macro- or micronutrients can
effectively alleviate nutritional deficiencies in plants, increase
the trace element content of leaves and fruits, improve crop
yield, and promote produce quality (Gao et al. 2018; Roosta
2014; Roosta and Hamidpour 2013). Pot and field experi-
ments showed that sprayingmicronutrients could increase leaf
number, plant height, leaf diameter, and the chlorophyll con-
tent of leaves, and reduce the nitrate content of vegetables
such as lettuce and Chinese cabbage (Guo et al. 2008;
Zhang et al. 2011). Recent studies have shown that foliar-
applied nano-fertilizers are better than normal salt fertilizers
for improving the quality, yield, and metabolism of crops. For
example, low doses of a Ca nano-fertilizer were better than
high doses of calcium chloride (CaCl2) in reducing pomegran-
ate fruit cracking, and the fruit quality was improved more
with the nano-nitrogen fertilizer at a rate of 1.8 kg N ha−1 than
with two applications of urea at a rate of 16.3 kg N ha−1

(Davarpanah et al. 2017). ZnSO4 can be transported into the
endosperm through the crease phloem of wheat (Cakmak et al.
2010), but zinc oxide (ZnO) nanoparticles penetrate the leaf
surface easily compared with ZnSO4 (Rossi et al. 2018), and
studies have shown that foliar-applied nanoparticles such as
gold nanostructures can be taken up and transported by the
phloem (Raliya et al. 2016).

In addition to meeting crops’ nutrient demand, recent stud-
ies have shown that foliar application of nutrient elements can
be an effective method to improve the stress resistance of
crops. Foliar application of Si can stimulate plants to grow
under stress conditions including salinity, deficiency or excess
of water, and high or low temperature (Artyszak 2018). A
review on the effect of N application on sunflower under water
stress argues that future research is needed for a better under-
standing of interactions between foliar and soil-applied N un-
der drought conditions (Ahmad et al. 2014). A brief summary
of the effect of foliar sprays with different nutrients on crops
grown under abiotic stresses such as salinity, drought, or heat
is presented in Table 1.

3.2 Effects on Soil Quality

Leaf spraying enables plants to absorb nutrients directly
from their leaves instead of roots, which can reduce the
adverse effects of chemical fertilizers on soils and im-
prove the soil environment. Some studies have shown
positive effects of foliar fertilization on the soil ecosys-
tem. For example, after spraying with Si fertilizer,
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bacteria levels in wheat and maize were 77% and 67%
higher, while fungi levels were 31% and 39% lower, than
those in controls, respectively (Xu et al. 2018). Compared
with the controls, foliar applications with monopotassium
phosphate on potato can significantly increase the soil
actinomycete communities while significantly decrease
soil fungi communities (Moon et al. 2019). The foliar
application of 5.0 g L−1 ZnO nanoparticles can increase
the soil microbial counts and enzyme activities in rice
cultivated under low soil Zn concentrations (Bala et al.
2019). Xiao et al. (2018) reported that Fe fertilization of
potato leaves had a significant effect on the beta diversity
of fungi; foliar addition of Fe was suggested to influence
plant Fe levels, entering the root system to affect rhizo-
sphere fungal communities. Moreover, the application of
foliar fertilizers can reduce salt accumulation in the soil to
a certain extent. Reducing soil fertilization and increasing
foliar fertilization have been shown to have no effect on
tomato yield, but to effectively reduce the residual nitrate
N and available P in the 0–20-cm soil layer (maximum
reductions of 58% and 32%, respectively) (Sun et al.
2011). When urea and organic K fertilizer were sprayed
on leaves (reducing the amount of soil fertilizers used),
the yield of cucumber did not decrease but the content of
nitrate N in the soil decreased significantly (Xu et al.
2004). However, other studies reported increased soil
electric conductivity (EC), as some Si fertilizers were
not effectively absorbed and utilized by crops after

spraying (Xu et al. 2018). Therefore, better fertilization
schemes are required to improve crop nutrient uptake
and reduce the accumulation of salts in the soils.

3.3 Effects of Foliar Fertilization on the Uptake of Soil-
Applied Nutrients

Many studies have suggested that the nutrient elements and
other constituents of foliar fertilizer formulations may stimu-
late the uptake of soil-applied fertilizers, which could account
for the decrease of salt accumulation in the soil. Experiments
using the 15N isotopic tracer technique showed that N accu-
mulation of cotton via root uptake was approximately
11.35 mgwith ammoniumN treatment after foliar application,
with the N uptake efficiency increasing by 28% compared
with the water control treatment (Zheng et al. 2018).
Moreover, spraying K at the budding stage of potato can pro-
mote the absorption and utilization of soil K (Zheng et al.
2007). Wei et al. (2013) reported that, under conditions of
insufficient N and P application via base fertilizer, spraying
urea on leaves met the demand for N in potato, thus promoting
plant growth and the absorption and utilization of available
soil nutrients (especially N and P). Foliar application of some
trace elements showed the same effect. Roosta andMohsenian
(2012) reported that the P content in the shoots and roots of
pepper was significantly affected by Fe foliar application, as
were the concentrations of K, Mg, and Ca in shoots. Foliar B

Table 1 A brief summary of the
effects of foliar-applied elements
on crops grown under abiotic
stress

Abiotic stress Element Crop Ref.

Salinity stress Se, B, Fe Stevia (Shahverdi et al. 2020)

Se, B, Fe Stevia (Shahverdi et al. 2018)

N Cotton (Luo et al. 2015)

K, Zn Wheat (Zafar et al. 2016)

Fe, Zn Bean (Abou-El-Nour et al. 2017)

Se Lettuce (Shalaby et al. 2017)

Se Strawberry (Zahedi et al. 2019)

Macro- and micronutrients Tomato (Camen et al. 2017)

Drought stress Zn, Mn Wheat (Shams 2019)

Ca Maize (Naeem et al. 2018)

Ca Sugar beet (Hosseini et al. 2019)

Ca, B, Fe, Mn, Mo, Zn Spring barley (Januškaitienė and Kacienė 2017)
Water deficit Fe, Mn Canola (Pourjafar et al. 2016)

Si Soybean (Teodoro et al. 2015)

Heat stress K Wheat (Shahid et al. 2020)

N Bean (Hassan et al. 2015)

Drought and heat stress N, P, K, B Pear and apple (Zargar et al. 2019)

Low-temperature stress N or P, K Pears (He et al. 2012)
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application on tartary buckwheat can promote its uptake and
utilization of soil available N and Pl (Wang et al. 2018).

Therefore, although the effect of foliar spraying is some-
times inferior to that of soil fertilization due to the limitation in
the amount of nutrients that can be sprayed (Reed et al. 1988),
leaf nutrients can be absorbed and transported to the roots
through the stem, improving root activity and preventing pre-
mature senescence of roots therefore enhancing root absorp-
tion capacity, with this interaction making the combination of
soil and leaf fertilization a relevant practice. For example, the
combination of soil application and foliar application is supe-
rior to either soil-applied or foliar-applied alone in increasing
the Zn concentrations in brown rice (Phattarakul et al. 2012)
and grain (Poblaciones and Rengel 2016). Soil or foliar N
fertilization can improve biomass, leaf area per plant, and leaf
photosynthesis of cotton, and a combination of soil- plus
foliar-applied N was superior to either soil-applied or foliar-
applied alone under salinity stress (Luo et al. 2015).
Compared with soil or foliar fertilization alone, combined soil
and foliar application of N + Zn resulted in the highest fruit
yield and quality (Amiri et al. 2008), while the application of
Cu-based foliar fertilizer with added Zn and controlled-release
urea promoted plant growth and soil mineral N absorption
(Zhu et al. 2012). Therefore, the combination of soil fertiliza-
tion and leaf fertilization is a promising method to reduce the
utilization of N, P, and K. Foliar ZnSO4 combined with mac-
ronutrient fertilization can reduce the conventional N applica-
tion rate by 15%. This reduction can be compensated by in-
creasing the number of times the leaves are sprayed with fer-
tilizer, and to obtain greater economic benefits, the leaf fertil-
izer should be sprayed more than three times (Li and Liu
2015). Pot experiments showed that 1.0% foliar fertilizer with
basal fertilizer and half the typical amount of N had the best
effect on the nutrient content, yield, and quality of brassica
rape (Fan et al. 2010). Soil inoculation using phosphate-
solubilizing bacteria (PSB) or foliar spraying using mono-
ammonium phosphate (MAP) or nano-phosphorus (NP) re-
sulted in significant increases in the performances, physio-
biochemical attributes, and antioxidative defense system com-
ponents in Phaseolus vulgaris plants in calcareous soils.
However, integrative PSB+MAP or PSB+NP treatment fur-
ther improved all abovementioned parameters in plants (Rady
et al. 2019).

In summary, foliar fertilization is an effective measure to
improve the soil environment and crop quality, especially un-
der restricted soil nutrient utilization and high soil nutrient loss
rates (Fernández and Brown 2013), and when crops are in a
special growth period, such as root senescence at the later
growth stage. Spraying of foliar fertilizers is a fast, efficient,
and targeted fertilizationmethod, which can be combinedwith
soil fertilization to reduce the use of chemical fertilizer and
soil salinity accumulation. To maximize the effects of foliar
nutrition, attention should be paid to the timing and

concentration of formulation (including the interactions there-
of), according to the characteristics of the crops treated and the
soil fertility. Further studies of these issues are still required,
especially with regard to the combination of soil and leaf
fertilization.

4 Disadvantages of Inorganic Leaf Nutrition

The effectiveness of spraying fertilizer has been shown to be
influenced by many factors, including the plant species and
growth status, the composition and physicochemical proper-
ties of foliar fertilizer, and environmental factors such as tem-
perature and illumination (Fernández and Brown 2013;
Fernández and Eichert 2009; Li et al. 2009). More detailed
information regarding the environmental, physiological, and
biological factors affecting plant response to foliar fertilization
can been found in the small book published by Fernández
et al. (2013). Overall, foliar treatments are associated with
two main problems: uptake of nutrients by leaves and trans-
port of nutrients from leaves to other plant parts.

Many factors affect the nutrient absorption capacity of
leaves. For example, transpiration loss of leaf Se solution
may occur, and some Se may be assimilated into organic Se
and volatilized on the leaf surface; therefore, soil application
of Se can be superior to leaf spraying of Se with respect to Se
bioaccumulation and the nutritional quality of rice grain
(Zhang and Zhou 2019). The effectiveness of Fe sulfate
(FeSO4) can be due either to reductase activity once the ap-
plied Fe(II) has been oxidized to Fe(III) or to direct uptake of
Fe(II) through a transporter (Álvarez-Fernández et al. 2004);
Fe supplied via certain compounds may be readily
immobilized in the leaf apoplast due to ionic binding or the
formation of insoluble Fe compounds (Fernández et al. 2005).
Under short-term drought or salt stress, the application of fo-
liar fertilization did not promote plant growth, because
drought reduced the uptake of K, Ca, Mg, and P, possibly
due to reduced transpiration (Hu et al. 2008). Moreover, the
short contact time of a solution on the leaf surface and fast
drying on the crop surface will also affect the absorption of
foliar nutrients.

The mobility of foliar-applied nutrients in plants is another
important factor in determining the efficacy of foliar fertilizer.
A study performed on beans in 1957 indicated that all ele-
ments applied to leaves were absorbed and translocated, but
not at the same rate or according to the same pattern; more-
over, elements such as Ca, B, Fe,Mn, and Zn had little phloem
mobility (Bukovac and Wittwer 1957). Subsequent studies
were performed to examine the underlying mechanism. Will
et al. (2011) suggested that B was immobile in phloem, and
the distribution of B in plants mainly followed the transpira-
tion flow; within the cell wall and cytoplasm, B rapidly
formed stable complexes and contributed to the water-
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insoluble portion. Vicosi et al. (2020) found that foliar appli-
cation of B significantly influenced the content and accumu-
lation of B in the shoot and the root system of snap bean, but
did not change the contents in pods. However, the tested doses
did not influence significantly the growth variables and pro-
ductivity, though they affect the physiology of snap bean
plants, with the high B doses causing symptoms of phytotox-
icity. Zn in wheat leaves showed limited mobility and moved
less than 25 mm from the point of application after 24 h, and
X-ray absorption near-edge structure (XANES) data showed
that Zn was then complexed by ligands in the leaves, poten-
tially in response to localized Zn toxicity (Doolette et al.
2018). In Zn-deficient plants, the mobility of Zn was restricted
to an even greater extent as the concentration of Zn reached
background levels within a distance of 2 mm; the limited
mobility could also be attributed to the immobilization of Zn
within Zn–ligand complexes with high stability constants (log
K) at pH 6.0–8.0 (Du et al. 2015; Marešová et al. 2012). In
conclusion, the re-translocation of nutrients from leaves to
sink organs is not easily accomplished in crops under condi-
tions of high pH in phloem, poor transpiration rate, and espe-
cially the immobilization of complexes with high stability.

5 Effects of Foliar Spray Chelating Foliar
Fertilizers

5.1 Advantages of Chelating Leaf Fertilizer

Metal chelates have been used in agriculture for more than
50 years to compensate for the deficiencies of common inor-
ganic foliar fertilizers (Montalvo et al. 2016). When nutrient
elements and chelating agents form stable chelate fertilizers,
the utilization rate of nutrient elements can be usually in-
creased, leading to remarkable improvements in plant stress
resistance, promotion of early crop maturity, high yield, and
improved quality (Gong 2002). Low application rates of high-
ly phytoavailable products minimize the release of nutrition-
ally essential, but potentially ecohazardous, metals into the
environment (Peryea 2006).

5.1.1 Effects of Chelating Agents on Crops

Chelating agents, such as humic acid, amino acid, and sugar
alcohol, can enhance crop stress resistance, promote the
growth of crop roots, and improve the ability of crops to ab-
sorb nutrients (Cheng et al. 2011; Wang et al. 2019; Yuan
et al. 2009); e.g., in pot experiments, the contents of Mn and
B in leaves sprayed with humic acid and Mn-B mixed liquor
were 7.9% and 6.9% higher than those sprayed with Mn-B
mixed liquor (Xiao et al. 2004). Compared with controls, the
rape yield was increased by 25%, 31%, and 35% by spraying
with sorbitol, sodium gluconate, and glycine, respectively.

Spraying appropriate low molecular weight organic com-
pounds could markedly improve the uptake of nutrients (N,
P, K), enhance the contents of soluble sugar and protein, and
decrease the nitrate content of rape (Yu et al. 2014). Compared
with ZnSO4 spraying alone, the Zn uptake of brassica rape
increased by 26%, 50%, and 67% when sprayed with glycine,
glutamic acid, and threonine along with ZnSO4, respectively
(Shen et al. 2017).

5.1.2 Promoting the Adsorption and Migration of Elements

Firstly, the rate of foliar-applied nutrient retention or repulsion
depending on the interactions between the fertilizer drops and
plant surfaces is the first step in the absorption of foliar fertil-
izers, which predominantly relies on the contact area between
the fertilizer drops and the plant surface (Fernández and
Brown 2013). The polarity and hydrophobicity of nutrient
elements chelated with different chelating agents can be more
suitable for the dispersion of nutrient elements on leaves,
thereby avoiding burning of leaves due to excessive local
concentrations and increasing the absorption of nutrients by
leaves. Secondly, due to the special structure of chelates, the
rate of crossing the cuticle of leaves after spraying can be
usually faster than that of inorganic ions. Due to the high
stability of the complex, nutrient elements can be absorbed
and transported in chelated form (Mu et al. 2006), thus pro-
moting the migration and transformation of elements in crops;
e.g., the shoot Fe concentration was significantly influenced
by the foliar application of all Fe sources, but the Fe concen-
tration in roots of pepper was only affected by ethylenedi-
aminetetraacetic acid–chelated Fe (Fe-EDTA) (Roosta and
Mohsenian 2012). In addition, high concentrations of nutri-
ents in foliar fertilizers may strongly affect chemical specia-
tion and mobility due to localized toxicity in crop leaves.
Therefore, the application of chelating leaf fertilizers with
slower release rates is likely to reduce toxicity on a local scale
(Doolette et al. 2018). Moreover, the high stability of the
chelating leaf nutrients with slower release rates is likely to
contribute to the close nutrient release rate synchronous with
crop absorption, which facilitates high utilization of nutrient
elements compared with common inorganic foliar fertilizers.
Following foliar spraying of amino acid–chelated Fe fertilizer,
the average Fe concentration in all cultivars of brown rice
tested was increased by 14% compared with control (Yuan
et al. 2013). Similarly, the Fe content of strawberries treated
with small molecular organic-chelated Fe and Fe-EDTA in-
creased significantly, by 35% and 27%, respectively, while
the effect of spraying Fe sulfate on Fe content was not signif-
icant (Yu et al. 2016). Similar to Fe treatments, the grain Zn
and protein content of wheat plants sprayed with amino acid–
chelated Zn (Zn-AA) was on average 14% higher than that of
plants sprayed with inorganic ZnSO4 (Ghasemi et al. 2013).
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Therefore, the effect of foliar spray chelating fertilizers can
often be better than inorganic foliar fertilizer on crop yield and
quality improvement (Souri et al. 2017; Wang et al. 2014).
Compared with FeSO4 spraying, chelated Fe spraying
achieved higher yield and improved the symptoms of Fe de-
ficiency in soybean (Dong et al. 2011). The fertilizer was
supplemented with MnSO4, amino acid–chelated Mn, or
Mn-EDTA; the application of an appropriate amount of che-
lated Mn had a better effect on improving the quality, increas-
ing the soluble protein and vitamin C (VC), and reducing the
nitrite and nitrate content of Brassica pekinensis (Han et al.
2011). The effectiveness of amino acid–chelated K in improv-
ing nut yield and quality was higher than that of potassium
sulfide (K2SO4), and the best nut quality and highest yield
were obtained with foliar application of lysine plus methio-
nine (Hamze et al. 2018).

5.2 Disadvantages of Chelating Fertilizer

Spraying chelating fertilizer can also have unsatisfactory ef-
fects due to a number of factors (Álvarez-Fernández et al.
2004; Modaihsh 1997), such as light, stomata, leaf age, and
species (Rodríguez-Lucena et al. 2009; Schlegel et al. 2006;
Wallace and Wallace 1982). Nutrient elements are not easily
absorbed by crops after chelation due to the high molecular
weight of some chelating agents; in the presence of Fe-EDTA,
aqueous pores are reduced in size and the penetration rate of
CaCl2 is also significantly decreased (Schönherr et al. 2005).
Rios et al. (2016) used the Perls blue method to trace Fe
uptake pathway in leaves of Prunus rootstock and found that
inorganic Fe salts caused larger leaf Fe concentration in-
creases than Fe-EDTA. Under conditions of Fe deficiency,
the highest Fe uptake and distribution thereof in leaves were
recorded after foliar spray treatment with FeSO4 followed by
Fe-citrate and Fe-EDTA (Chakraborty et al. 2014a). Similarly,
all Fe sources significantly increased the leaf chlorophyll of
peach, as well as both the “physiologically active” and total Fe
concentrations of the leaves compared with controls; the
highest values were noted with foliar-applied 1% FeSO4

(Chakraborty et al. 2014b). Early season foliar FeSO4 have
better effects on pomegranate yield and quality than Fe-
EDDHA (Davarpanah et al. 2020). Inorganic Mn (MnSO4)
was more effective than Mn-EDTA with regard to improving
the content of Mn in the leaves under the same concentration
of Mn (Papadakis et al. 2005). A multi-year field study
(Peryea 2006) of the phytoavailability of Zn in 11 commercial
products indicated that foliar application of inorganic Zn prep-
arations, such as Zn phosphate, Zn oxide, and Zn oxysulfate,
was more effective than of chelated/organically complexed
Zn.

Chelating agents with different structural characteris-
tics show different ion chelation activities, and differences
in stability according to temperature and pH. For

example, although all lignosulfonates (LS) can complex
Fe, only spruce LS shows good ability to maintain signif-
icant amounts of soluble Fe above pH 8 (Rodríguez-
Lucena et al. 2011), which may underlie differences in
efficiency: ultrafiltered LS and phenolated LS showed
slightly better ability to supply foliar-applied Zn to navy
beans than the others, while those with lower pH stability
but higher complexing capacity were slightly more suit-
able as chelating agents providing Zn (Benedicto et al.
2011). Therefore, the effects of foliar-applied chelated
fertilizers vary according to the chelating agents used.
For example, mature Tempranillo tinto leaves sprayed
with Fe-EDTA showed higher Fe concentrations than
those sprayed with Fe-ethylenediamine disuccinic acid
( F e - EDDS ) (Y u n t a e t a l . 2 0 1 3 ) , w h i l e F e -
diethylenetriaminepentaacetic acid (Fe-DTPA) was better
than Fe-N-(2-hydroxyethyl)ethylenediaminetriacetic acid
and Fe-EDTA with regard to improvement of Fe concen-
tration and bioavailability (He et al. 2013). Foliar-applied
Zn-AA showed greater effects than Zn-EDTA and Zn-
citrate in improving the Zn concentration (Wei et al.
2012b), and higher levels of Zn uptake and mobilization
to leaves and stems were achieved with Zn-EDTA than
with Zn-LS (Benedicto et al. 2011). After the foliar appli-
cation of 15 products, including 10 natural complexes and
5 synthetic chelates, the greatest regreening effect was
observed for plants treated with synthetic chelates and
amino acid complexes; translocation to the roots only oc-
curred for Fe-LS (Rodríguez-Lucena et al. 2010). In ad-
dition, some synthetic chelating agents cannot be
absorbed and utilized well by crops despite good Fe che-
lation activity; addition of the calcium chelating agent
ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA) to
nutrient solution decreased the dry weight of wheat seed-
lings and the total Ca content in underground parts (Wang
et al. 2000). Besides, they can also be poorly biodegrad-
able and may mobilize toxic heavy metals from contami-
nated sediments (Tucker et al . 1999; Yuan and
VanBriesen 2006).

The main chelating agents are humic acid, amino acid,
LS, sugar alcohol, polysaccharides, and synthetic chelat-
ing agents, such as EDTA and DTPA. Their reported
ability to improve the bioavailability of nutrient elements
varies among studies, and it is not yet clear which chelat-
ing agent has the best performance and lowest cost.
Therefore, to improve the quality of chelating fertilizer,
it would be necessary to select an environmentally friend-
ly chelating agent with appropriate chelating capacity,
while considering differences in maintenance of solubility
and release of metal elements to plants under different
acidity and alkalinity conditions (Lucena 2003), thus op-
timizing the absorption, utilization, and mobility of these
elements in plants, which is help for improving the
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utilization rate of fertilizers and alleviating environmental
problems caused by excessive fertilization.

5.3 New Sugar Alcohol–Chelated Leaf Fertilizer

Due to the alkaline environment of phloem, the solubility and
mobility of many metal mineral nutrients are poor, thus de-
creasing the fertilizer utilization rate (Bukovac and Wittwer
1957; He et al. 2017); meanwhile, sugar alcohols are the pri-
mary product of photosynthesis and exist in stable liquid form,
and the migration of mineral nutrients is better in the alkaline
environment after forming complexes with sugar alcohols
(Brown and Hu 1996). For example, foliar B can be long
distance transported from leaves to roots via phloem by
forming a B-sucrose complex in citrus plants (Du et al.
2020). The B source affects the assimilation of the nutrient
uptake of eucalypt, and the assimilation was higher when
applied with sorbitol (Muller da Silva et al. 2015).
Compared with wild-type tobacco, the flow of B in plants of
transgenic tobacco containing sorbitol increased significantly,
which improved the growth and yield of tobacco with limited
or interrupted soil B supply (Brown et al. 1999).

Many experiments have examined the fertilizer efficiency
of sugar alcohol chelating fertilizers. Compared with conven-
tional fertilization and Ca nitrate treatment, spraying sugar
alcohol–complexed Ca increased the yield of eggplant by
9% and 2%, respectively, and the VC, soluble solid, and sugar
acid content increased as well (Wu et al. 2013). The applica-
tion of small-molecule organic chelating Ca fertilizer, devel-
oped from amino acids and sugar alcohol, can increase the
biomass, VC, and soluble protein content of Chinese cabbage
and tomato, and reduce the nitrate nitrogen content; it can also
effectively promote the absorption of Ca and increase the total
Ca content of plants compared with the application of calcium
nitrate (Ding et al. 2015; Shen et al. 2016). Table 2 summa-
rizes the research results on the effect of foliar spray of sugar
alcohol–chelated fertilization.

The table shows that, during the past years, the focus of
research about sugar alcohol–chelated leaf fertilization was
mainly on two issues: (i) the fertilizer efficiency comparisons
between sugar alcohol–chelated leaf nutrients and other leaf
nutrients including inorganic leaf fertilization, EDTA-
chelated fertilization, nanoscale nutrients, and amino acid–
chelated fertilization. A general trend might be derived that
the effect of the sugar alcohol–chelated nutrients tends to be
better than that of other kinds of foliar nutrient; (ii) the
spraying methods of sugar alcohol–chelated leaf nutrients in-
cluding spray stages, spray frequencies, and concentrations.
Nevertheless, almost all of the research did not pay attention to
the interreaction between the foliar-applied sugar alcohol–
chelated nutrient and the uptake of soil-applied fertilizer, since
some studies have suggested that nutrient elements and other
constituents of foliar fertilizer formulations may stimulate the

uptake of soil-applied fertilizer and the effect of foliar-applied
fertilizer could be affected by the soil nutrient status and crop
nutrient deficiency (see section: Effects of Foliar Fertilization
on the Uptake of Soil-Applied Nutrients).

In addition, the evaluation indexes for the effects of
foliar-applied sugar alcohol–chelated nutrients include
the growth, yield, and quality of crops, the nutrient con-
tent in crops, the morpho-physiological characteristics of
crops, and the content absorption and migration of foliar-
applied nutrient elements (Table 2). Sugar alcohol–
chelated fertilization has a tendency to be superior to in-
organic leaf fertilization and other chelating foliar fertil-
izers in those evaluation indexes. However, there is evi-
dence that in soybean the addition of polyols may in-
crease the absorption of B, while having little effect on
B translocation (Will et al. 2011, 2012), although whether
there is a distinct effect of B-sorbitol complexes on B
translocation apart from the pure adjuvant effect is uncer-
tain. Therefore, more attention should be paid to the mi-
gration and transformation of nutrient elements chelated
with different chelating agents in comparison to inorganic
foliar fertilizer.

Furthermore, studies on sugar alcohol chelating fertilizer
have largely focused on its fertilizer efficiency, and few have
focused on the fertilizer efficiency difference between chelat-
ing fertilizers with different chelation strengths and chelation
rates. The chelation rate can be detected by quantitative deter-
mination methods such as spectrophotometric (Yan et al.
2018b) and conductivity measurement (Yan et al. 2018a). A
detailed overview about the methods of separation and detec-
tion of chelates has been published by Bai et al. (2020).
Chelation reactions can be divided into simple complexation,
chelation, and multinucleus complexation reactions according
to the ligands and coordination atoms (ions) involved. Their
stability and biological value are affected by both their phys-
ical and chemical coefficients, including the chelation rate in
particular, as well as the chelation strength (among other pa-
rameters) (He et al. 2019a), which can be affected by chelation
conditions, such as the reaction temperature, reaction time,
and pH value of reaction system (He et al. 2019b). Plot and
field experiments (Li et al. 2020a; Li et al. 2020b) have shown
that the application effects of sorbitol-complexed Ca on potato
vary by its chelating process. Therefore, it is necessary to find
out the effect of chelation conditions on the chelating fertilizer
efficiency.

6 Concluding Remarks

Compared with inorganic foliar fertilizers, chelated foliar
fertilizers may improve the migration ability and utiliza-
tion efficiency of inorganic mineral salts. Efficacy often
differs among fertilizers, but most studies only examine
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nutritional effects on crops; few have focused on the ef-
fects of chelation on the utilization rate of nutrient ele-
ments, their absorption, migration, and transformation in
crops, and the interactions among different nutrients with
foliar spraying of different types of leaf fertilizer. More

attention should be paid to the migration and transforma-
tion of nutrient elements chelated with different chelating
agents in comparison to inorganic foliar fertilizer.

The main chelating agents currently in use are humic acid,
amino acid, LS, sugar alcohol, and synthetic chelates. Sugar

Table 2 A summary of the effect of foliar spray sugar alcohol–chelated fertilization

Element Crop Factor Indexes Results Ref.

Ca Chinese
cabbage

Ga sources Growth, quality, nutrient uptake (AA+SA)-Ga > SA-Ga, Ca(NO3)2 (Shen et al. 2016)

Tomato Ga sources Yield, quality, nutrient uptake (AA+SA)-Ga > SA-Ga > Ca(NO3)2 (Ding et al. 2015)

Peach Ga sources Ga content, quality (AA+SA)-Ga > SA-Ga > Ca(NO3)2 (Yu et al. 2017)

Eggplant Ga sources Growth, yield, quality SA-Ga > Ca(NO3)2 (Wu et al. 2013)

Peach Ga sources Quality, split-pit SA-Ga > CaCl2, Ca(NO3)2 (Li et al. 2014a)

Grape Ga sources Ca content, fruit quality SA-Ga is suitable for cluster spray
Ca(NO3)2 is suitable for foliar spray

(Guan et al. 2014)

Grapevine Ga sources Photosynthesis, enzymes activities SA-Ga > EDTA-Ca > CaCl2 >
Ca(NO3)2

(Yang et al. 2014)

Tomato Ga sources Photosynthesis under heat stress SA-G, Nano-Ca > CaCl2 (Qi et al. 2014)

Apple Ga sources Fruit firmness, enzymes activities SA-Ga > AA-Ca, CaCl2, Ca(NO3)2 (Pei et al. 2018)

Blueberry Ga sources Quality, nutrient content Ineffective (Manzi and Lado
2019)

Grape Spray stages Ca content, fruit quality The young berries stage > 2 weeks
before the harvest

(Guan et al. 2014)

Peach Spray stages Ga content, quality Coloring period > fruit enlargement
period

(Yu et al. 2017)

Honeydew
fruit

Spray stages and
frequency

Quality Four applications > one or two
applications

(Lester and
Grusak 2004)

Cantaloupe
fruit

Spray stages and
frequency

Quality Did not benefit from applications (Lester and
Grusak 2004)

Zn Potato Zn sources Zn absorption, and distribution SA-Zn > ZnSO4 (Sun et al. 2015)

Apple Zn sources Quality, nutrient content SA-Zn ≥ ZnSO4 (Zhang et al.
2013)

Rice Zn sources Seed enrichment, nutrient content,
productivity

Sorbitol-stabilized Zn > nano-Zn >
EDTA-Zn

(Alvarez et al.
2019)

Apple Spray stages Quality, nutrient content – (Zhang et al.
2013)

Apple Spray stages Quality, Zn content, enzymes activities – (Zhang et al.
2014)

Rice Spray
concentration

Seed enrichment, nutrient content,
productivity

– (Alvarez et al.
2019)

B Rapeseed
seedlings

B sources Morpho-physiological characters, B
absorption and distribution

SA-B, glycerol-B > boric acid (BA) (Yan et al. 2017a)

Rapeseed
seedlings

B sources Mitigative effect on aluminum toxicity BA > SAB (Yan et al. 2017b)

Eggplant B sources Growth, yield, quality SA-B > organic B, BA (Wang et al.
2017)

Citrange
rootstock

B sources Growth, physiology characters SA-B > BA (Zhang et al.
2019)

Fe Strawberry Fe sources Quality, Fe absorption (AA+SA)-Fe > EDTA-Fe, FeSO4 (Yu et al. 2016)

Ga + B Apple Spray stages and
frequency

The incidence of sunburn – (Lötze and
Hoffman 2014)

AA, amino acid; SA, sugar alcohol; SA-Ga, AA-Ga, and (AA+SA)-Ga, Ga chelated to sugar alcohol, Ga chelated to amino acid, and Ga chelated to amino
acid and sugar alcohol (the same as other kind of elements)

J Soil Sci Plant Nutr



alcohols, as a kind of surfactant and primary products of pho-
tosynthesis, are a kind of promising chelator that can improve
nutrient element uptake and transport. Due to the differences
in physicochemical properties of chelating agents and the che-
lation conditions such as reaction temperature and reaction
time, chelating leaf fertilizers vary in chelation rate and
strength, which can have impact on their fertilizer efficiency.
It is not clear which chelating agents and chelating conditions
most contribute to nutrient absorption and release in plants.
Therefore, further in-depth systematic studies are needed to
evaluate the different types of chelating agents, and the effects
of chelation technology on fertilizer efficiency, to guide the
development of new foliar fertilizers.

Under conditions of deficiency in a particular nutrient ele-
ment, the growth and development of crops cannot be im-
proved, even if other nutrient elements are supplied in large
quantities. However, excessive application of nutrient ele-
ments to the soil will result in an abnormal accumulation of
elements. The combination of soil fertilization and foliar fer-
tilization can reduce the use of chemical fertilizers and achieve
good production and high yield; thus, use of this combination
is an effective measure for alleviating secondary salinization
and improving the soil environment. Nevertheless, the opti-
mum quantity and nutrient element application method should
be determined according to local conditions and comprehen-
sive assessment of the fertility status of the soil to be cultivat-
ed. Systematic studies of the fertilization efficiency of differ-
ent combinations of root and foliar fertilizers are needed, es-
pecially with respect to the interactions between foliar nutri-
ents and soil nutrients, to establish a systematic and scientific
fertilization model, promote widespread use of foliar fertilizer
in agricultural production, and reduce the ecological impact of
chemical fertilizer on the environment.
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